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Understanding the mechanisms of evolution of brain pathways for complex

behaviours is still in its infancy. Making further advances requires a deeper

understanding of brain homologies, novelties and analogies. It also requires

an understanding of how adaptive genetic modifications lead to restructur-

ing of the brain. Recent advances in genomic and molecular biology

techniques applied to brain research have provided exciting insights into

how complex behaviours are shaped by selection of novel brain pathways

and functions of the nervous system. Here, we review and further develop

some insights to a new hypothesis on one mechanism that may contribute

to nervous system evolution, in particular by brain pathway duplication.

Like gene duplication, we propose that whole brain pathways can dupli-

cate and the duplicated pathway diverge to take on new functions.

We suggest that one mechanism of brain pathway duplication could be

through gene duplication, although other mechanisms are possible. We

focus on brain pathways for vocal learning and spoken language in song-

learning birds and humans as example systems. This view presents a new

framework for future research in our understanding of brain evolution

and novel behavioural traits.
1. Introduction
The evolution of brain pathways for generation of complex behavioural traits

remains an enigmatic and fundamental question in biology. Therefore, examin-

ing the proximate and ultimate mechanisms driving changes in brain structure

and function provides an exciting opportunity to understand the evolution of

complex behavioural traits. In this regard, various hypotheses have been pro-

posed to explain evolution of complex behavioural traits, including increases

in brain or brain region size relative to body size, increases in total number

of neurons or neuron density, and presence versus absence of particular

neural networks that control a specific type of behaviour [1–5]. Some such

changes may have occurred with the emergence of the telencephalon during

the invertebrate to vertebrate transition, indicating that the central nervous

system has been an important target of selection [4,6–8]. However, current

empirical evidence for such models and theories are few and wanting.

Another fundamental problem in explaining the evolution of complex beha-

viours and brain pathways is understanding the contributing cellular and

molecular mechanisms. One overall hypothesis is that significant changes in

the brain can be generated by novel gene functions owing to gene duplications

or expansion of gene regulatory networks [7,9–12]. One of the duplicated genes

may then acquire a mutation in coding or regulatory sequences, which enables

it to acquire a new function that then undergoes selection, a process known as

neofunctionalization [12–15]. Other hypotheses posit that existing genes are

modified, including changes in coding sequence, cis-regulatory motifs [16,17]

or new alternative mRNA splice variants [18–21], a process known as subfunc-

tionalization [12–14]. However, the origin and evolution of such molecular

changes in the evolution of the nervous system and behavioural complexity

are not well understood.
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Here, we review and expand upon an underappreciated

theory of evolution of brain complexity, namely by brain

region or whole brain pathway duplication from pre-existing

brain circuits. We propose hypotheses on cellular and molecu-

lar mechanisms for brain region and pathway duplication,

including by gene duplication. We believe that such mechan-

isms may form a cornerstone of evolution of brain and

behaviour complexity, which enable adaptations to new

environments and social situations.
.org
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2. Theories on brain region and brain pathway
evolution for brain complexity

Comparative neurobiology studies indicate that many primitive

features of brain organization have been preserved to varying

degrees in extant species [22]. The brain also has evolved in a

mosaic pattern, with some regions changing dramatically,

while others have remained little changed through the course

of evolution [23]. While it is still unclear how brains evolve,

past theories posit that brain evolution could be understood

by examining how brains develop embryonically and how

such development can be modified [22]. It is thought that the

early embryonic state of the brain across species represents a

more similar and thus ancestral state, and that during develop-

ment, brain cells, regions and pathways diverge towards

lineage- or species-specific states. This is one way in which hom-

ologous brain regions can become diverse in adults across

species. Based on this view, the vertebrate brain is proposed

to consist of three basic divisions, with the spinal cord and

brainstem (hindbrain, midbrain and thalamus) having more

conserved organization, and the telencephalon more divergent

organization [24]. In turn, the telencephalon consists of three

major subdivisions, with the pallidum and striatum having

more conserved organization and the pallium or cortex a

more divergent organization. The pallium is largely layered in

mammals, and mostly nuclear in birds, reptiles and other

vertebrates, but with divergences among them [24,25].

With these fundamental principles, one can argue that

divergences may occur in many forms leading to more behav-

ioural complexity, including: (i) larger brain-to-body size ratios

endowing those animals with more advanced abilities [3];

(ii) novel connectivity within a pre-existing brain circuit that

enhances that particular circuit’s function for complex beha-

viours [26,27]; and (iii) the de novo presence of a specific

brain region or circuit that controls a newly evolved behaviour,

as has been proposed for the evolution of brain pathways for

vocal learning and spoken language [2,28,29]. It is this latter

theory that requires greater explanation.

A long proposed explanation for generating increased

cortical complexity is that a single region gradually differen-

tiates into two or more areas [30–35]. This could occur by

expansion of an existing region and then selectively partition-

ing part of the older region to the new function, while the

other part maintains the old function [36]. Allman and

Kaas also proposed that development of the brain could be

altered owing to a gene mutation so that a given area is dupli-

cated [33,37]. The duplication event would modify the

function of either one or both of the ancestral and duplicated

areas to take on a new function. Duplication itself may

modify the selection pressure on both structures, thereby

allowing the individual structures to use the once single func-

tional space in a mechanism reminiscent of adaptive
radiation [38]. More recently, Feenders et al. [39] suggested

that whole brain pathways could duplicate, followed by

divergence of one of the duplicated copies. This idea was pro-

posed as a mechanism to explain what they called the Motor
Theory of Vocal Learning Origin, which we review next.

(a) The motor theory of vocal learning origin and brain
pathway duplication

Vocal learning, a critical component of spoken language

acquisition, is the ability to modify acoustic and/or syntactic

features of sounds produced, including vocal imitation and

improvization. Vocal learning is a rare trait, so far discovered

in five distantly related groups of mammals (humans, bats,

elephants, cetaceans (dolphins and whales) and pinnipeds

(seals and sea lions)) and three distantly related groups of

birds (parrots, songbirds and hummingbirds) [1,40–42]. In

the past few decades, significant advances have been made

in guiding our understanding of the evolution and mechan-

isms of brain pathways for vocal learning in birds and

humans [2,40,42–49] (figure 1).

The independently evolved lineages of vocal learning

birds and humans share distinct forebrain pathways that con-

trol the acquisition and production of learned vocalizations

[2]. Within these pathways, all three avian lineages contain

seven cerebral (telencephalic) vocal nuclei and several thal-

amic nuclei. These nuclei, best characterized in songbirds

and parrots, are distributed between two subpathways

(figure 1a): (i) the vocal production, or posterior, pathway

that influences the production of learned song—which

includes an arcopallium nucleus (songbird RA (robust

nucleus of the arcopallium), parrot AAC (central nucleus of

the anterior arcopallium), hummingbird VA (vocal nucleus

of the arcopallium)), analogous to the laryngeal motor

cortex (LMC) in humans (figure 1b) that makes a specialized

direct projection to brainstem vocal motor neurons (MN),

which in turn controls the vocal organs, the syrinx (birds)

and larynx (humans); and (ii) the vocal learning, or anterior,

pathway that is primarily responsible for vocal imitation and

plasticity, which forms a pallial–basal ganglia–thalamic

loop, analogous to such loops in the mammalian brain that

presumably include Broca’s speech area in humans. The

song and speech regions in both these pathways are

embedded in or adjacent to non-vocal motor brain areas

[39,50]. These non-vocal motor regions are present in other

vertebrate species examined thus far, and are thought to be

involved in the production and learning of non-vocal motor

behaviours. Based on these findings, Feenders et al. [39] pro-

posed a motor theory of vocal learning origin, which stated that

‘cerebral brain pathways for vocal learning in distantly related

animals evolved independently as specializations of a pre-

existing motor system inherited from their common ancestor’

([39], p.1). This was a more general theory of the motor theory
of language origin [51], but with specific brain regions identified

and a proposed mechanism. The motor theory of vocal learn-

ing origin suggested that the last common ancestor of birds

and mammals had a motor forebrain pathway, including a

motor cortex or pallium region. This is because although the

motor pallial domain in mammals consists of six layers of

cells (layered) and nuclear subdivisions in birds and reptiles

(clustered), they function similarly and developed from the

same embryonic primordium. This is supported by results

obtained from activity-dependent gene expression and

http://rstb.royalsocietypublishing.org/
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Figure 1. Brain pathways controlling song in songbirds and spoken language in humans. (a) Vocal learning song pathway of songbirds. (b) Spoken language
pathway of humans. Black arrows, posterior vocal motor pathway; white arrows, anterior vocal learning pathway; dashed arrows, connections between the two
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differential gene expression experiments, which show that the

avian pallium has a functional columnar organization similar

to the mammalian pallial domain [39,52–54]. Further, the

mammalian non-vocal motor descending pathway and

the pre-motor pathway share similar connectivity patterns in

avian posterior and anterior motor pathways, respectively,

suggesting the presence of a pre-existing motor system shared

by both groups and their most recent ancestor [1,39,55,56].

The proposed mechanism of evolution of vocal learning

pathways was by brain pathway duplication [39]. In this

regard, it was hypothesized that parallel forebrain motor

learning pathways with auditory, somatosensory or other

sensory input, normally replicate multiple times during

embryonic development and connect to different brainstem

and spinal cord neurons to control different muscle groups.

In vocal learners, this forebrain pathway is hypothesized to

replicate one more time and then connect to the brainstem

circuits that control vocalizations and respiration. Then the

new vocal learning pathway would diverge to form novel

connections and functions relative to the adjacent non-

vocal motor pathways. Under this duplication hypothesis,

the vocal learning pathways share a deep homology with

the surrounding motor pathways, but convergence in the

independent lineages of vocal learners.

Several alternative hypotheses have been proposed for

evolution of vocal learning pathways, including that the path-

ways in humans and song-learning birds originated out of

either a pre-existing auditory pathway [57,58], a non-motor

cognitive region [59,60], a combined auditory–motor pathway

[61], or completely de novo [62]. In support of an auditory

origin hypothesis, the songbird posterior vocal motor pathway

is also partly adjacent to the auditory pathway and has some
parallel connections with the descending auditory system

[58]. However, such an anatomical position is not present in

hummingbirds, parrots, or humans [1,2]. With the exception

of the completely de novo hypothesis, even if the vocal learning

pathway arose from a non-motor pathway, the hypothesis of

pathway duplication could still apply.

If the duplication hypothesis were true, then one would

expect to find most genes expressed in vocal learning path-

ways to be similar to the pathway from which they were

duplicated. Further, one would expect to find divergent mol-

ecular changes in neural connectivity genes associated with

the unique connections found in vocal learning pathways.

These ideas were recently tested in a high-throughput gene

expression study using a novel computational approach

that determines homologous and convergent specialized ana-

tomical gene expression profiles from thousands of samples

and genes from multiple species [50]. Using comparative

microarray gene expression profiling of approximately

3000–7000 genes in vocal learning and vocal non-learning

avian and primate species, Pfenning et al. [50] found that

the song and speech brain pathway regions of vocal learning

birds and humans have gene expression profiles that more

closely match motor and premotor cortex and striatal path-

way regions adjacent to them than they do to auditory,

somatosensory or other brain regions (figure 1). These results

corroborated some earlier single gene expression, develop-

mental, functional, and connectivity studies [24,52,63–67].

Combined, the findings support the idea that the similarities

are owing to homology and not convergence. Further, Pfen-

ning et al. [50] found divergent changes in expression of

genes that control neural connectivity in the avian song and

the human speech regions from the surrounding motor
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areas, but that were convergent among the vocal learning birds

and humans. There were also convergent changes in some genes

involved in neural development, neuroprotection and synaptic

communication functions. The brain expression characteriz-

ation of these genes [50,68] led to the discovery of a further

apparent duplication in the parrot brain [56], as described next.
 ypublishing.org
Phil.Trans.R.Soc.B

370:20150056
(b) Parrots contain a song system within a song system
Parrots surpass other vocal learning avian species in their abil-

ity to imitate human speech and also rival non-human

primates in their display of advanced cognitive skills and abil-

ity for tool use [2,69–74]. From 1981 until recently in 2015

(approx. 34 years), the neural pathways for vocal learning

had been studied in only one parrot species, the budgerigar

(Melopsittacus undulatus) [55,75–79]. From these studies, it

was apparent that the budgerigar song system shows some

differences from the songbird and hummingbird song systems

[55,75,76,79,80]. The posterior song system of songbirds and

parrots (and presumably hummingbirds) receives auditory

input from the posterior auditory pathway (e.g. auditory

Field L), but in parrots it receives additional auditory input

from a small part of the nucleus basorostralis (B), the remain-

der of which is somatosensory [81]. Neural tracing and

singing-regulated immediate early gene studies revealed some

differences in connectivity and position or shape of song

nuclei in parrots, but no clear differences were noted in the

presence or absence of song system structures [55,75,76,78–80].

Recently, partly based on the high-throughput gene

expression [50,68] and other findings, we led a study [56]

characterizing gene expression profiles that are specialized

in avian and/or human song/speech vocal learning circuits

(e.g. PVALB, SLIT1, FOXP1, NR2A, GLUR1, NADPH-d, AR,

mENK, TH, CGRP-LI) to understand the organization of the

song system in diverse groups of parrots representing all

the three superfamilies, Strigopoidea, Cacatuoidea and

Psittacoidea [82]. We found that the parrot pallial (cortical)

song nuclei had core regions that differed in gene expression

from surrounding shell regions, and both in turn differed

from the surrounding cortical motor areas (figure 2) [56].

Surprisingly, a subset of the genes (including PVALB) had

moderate specialized expression in the immediate surround-

ing non-vocal motor areas. Both the core and shell song

regions were functionally active in the production of learned

vocalizations, as revealed by vocalizing-driven immediate

early gene expression (EGR-1, C-FOS and DUSP-1), whereas

the surrounding brain regions were active in production of

non-singing motor behaviour, as revealed by rhythmic

controlled hopping-driven gene expression [39,56,79,85,86].

The connectivity of the core and shell systems were similar

to each other, but with some significant differences. One funda-

mental difference was that the core system made the rare direct

projection to brainstem vocal MN (via the AAC core nucleus),

whereas the parallel shell song system made mostly intra-

cortical projections (via AAC shell; figure 2b,c). The direct

projection to the brainstem vocal MN is considered critical

for the evolution of vocal learning and spoken language, as

it is either absent or very sparse in vocal non-learners

[2,42,87–92]. There were sparse connections between the

parrot cores and shells within and among each song nucleus.

The presence of these song nuclei in the kea, the most dis-

tantly related to the other extant parrot species [82,93],

indicates that parrots evolved the core and shell song systems
over 29 Ma before the kea split from the other parrot lineages.

The kea shell system, however, was less well differentiated in

terms of its gene expression specializations. There were also

large species differences in relative sizes of the core and shell

regions, where the shell had a significant log-linear relationship

with their brain section size, but the core did not. This meant

that shell regions were relatively larger in species with bigger

brains such as the gold and blue macaw, and the African

Grey and Amazon parrots that are considered to have more

advanced communication and cognitive capacities.

The fact that the shell system AAC nucleus does not have

the direct projection to the vocal MN (which is restricted to

the core region of AAC), but may be correlated with more

complex vocal learning behaviour, indicates that such direct

projections may not be the only means to increase learned

motor behavioural complexity over innate motor behaviours.

We speculate that it is possible that the direct projection may

not be required for the ability to imitate complex vocaliza-

tions, but strictly for the production of those learned

vocalizations. Clearly, further studies will be required to

explicitly test this hypothesis in parrots.

The gene expression specializations and neural connectivity

of the parrot core song nuclei were most similar to the song

nuclei of songbirds and hummingbirds, whereas the shells

were unique to parrots. The shell specializations appear to be

restricted to the cortical parrot song nuclei, as no shells have

yet been found for the striatal or thalamic song nuclei. The song-

bird and hummingbird species examined to date do not have

parallel vocal motor shell regions for any of their nuclei.

These findings indicate that the core and shell are two

parallel, partially independent systems, performing similar

and some unique functions for vocalizations. They support

a partial brain pathway duplication hypothesis of brain evol-

ution. In particular, we suggest that the core song system

evolved convergently in parrots, songbirds and humming-

birds as a duplication event in each lineage from the

surrounding motor areas (figure 2a,b). Thereafter, the parrot

core cortical song nuclei underwent a further partial dupli-

cation event to evolve the shell song system (figure 2c). The

shell song system went on to evolve specializations that

allow more complex vocal communication abilities in parrots

compared to other avian vocal learners. This dual system

evolved early in the parrot lineage, and has lasted and

expanded for millions of years in different species. In

addition, changes in the regulation of some genes that may

allow greater vocal–motor–auditory integration in vocal

learning systems could have influenced changes in the sur-

rounding motor areas to allow greater auditory–motor

entrainment and synchronizing of body movements to the

rhythm of music for dance in parrots [94–96].

It would be exciting to determine if similar duplications

of brain pathways have occurred in humans, not only in

the speech pathways but also for other advanced motor

movements such as dancing [97–99]. In the human brain,

areas 44 and 45 constitute Broca’s area, the ventrolatreal fron-

tal region critical for spoken language acquisition and

production [100]. Petrides et al. [101,102] showed that there

is a comparable area 44-like region involved in orofacial

musculature functions in macaque monkeys. What is still

unknown is whether area 44 in the human and the macaque

brain share common ancestry since there is lack of an out-

group comparison so far. It is tempting to speculate that

Broca’s area could constitute one or more duplications of a

http://rstb.royalsocietypublishing.org/
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more ancestral area 44, with divergent specializations for

learned vocalizations and thus spoken language.
3. Some alternative hypotheses to the motor
theory and brain pathway duplications

Expanding upon the alternative hypotheses, it is possible that

the core and shell systems in parrots arose simultaneously, in

which case the shell would not be a duplication of the core. How-

ever, for this alternative, it would be difficult to explain why the

parrot core pathway is more similar to the songbird and
hummingbird song systems, than an apparently evolutionary

older state (i.e. appearing first). The shell song system of parrots

does not appear to be a functionally differentiated region of the

core system, since the core system still exists in them and other

vocal learners.

A second alternative is that the shell is an independent dupli-

cation of the adjacent motor pathway, as the shell has a more

similar gene expression profile to the adjacent motor pathway

than the core. However, if this were the case, it would be hard

to explain how evolution of the shell is more independent of

the core, considering that the shell song nuclei surround the

cores and are not located elsewhere in the motor pathway and

http://rstb.royalsocietypublishing.org/
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that both core and shell are interconnected without notable

major connections to the surrounding motor areas.

A third alternative is that the parrot shell and core song

nuclei, as well as the songbird, hummingbird and human

song/speech region analogues, are all specialized transform-

ations of an existing motor pathway, i.e. subfunctionalizations,

rather than duplications from it, i.e. neofunctionalizations.

This would mean that the vocal learning species lost non-

vocal motor learning pathway neurons to gain vocal motor

pathway neurons. However, there is as yet no evidence for

loss of non-vocal motor or other functions in vocal learn-

ing species, but rather gain of functions even beyond vocal

learning (such as learning how to dance) [94,96,97,99] and

increases in relative brain-to-body sizes [103].

A fourth alternative is that vocal learning pathway neurons

migrate into their adult locations from developing non-adjacent

and even non-motor brain areas, and then byadjacent association

they adopt some of the motor learning pathway phenotypes.

Although this alternative is theoretically possible, one would

expect that the vocal learning pathway cells would have some

vestigial properties of their non-motor origin. Thus far, the evi-

dence has not revealed such an alternative origin, although

only in songbirds does the HVC (a letter-based name) motor

pathway nucleus share some secondary profiles in gene

expression with the human secondary auditory cortex [50].

A bigger challenge to the motor theory and duplication

hypotheses might at first glance be derived from a recently pro-

posed ‘continuum hypothesis’ of vocal learning. Based on

findings that mice have a rudimentary forebrain circuit involved

in modulating vocalizations but with a very sparse direct projec-

tion to brainstem vocal MN, buried within a motor region that

also controls other behaviours, and that mice and non-human

primates have at least a very limited ability to modify their voca-

lizations based on auditory experience, Arriaga & Jarvis [104]

and Petkov & Jarvis [2] proposed a continuum hypothesis of

vocal learning. In this hypothesis, vocal learning is considered

to range from complex (e.g. humans and parrots), moderate

(some songbirds), to limited or none (mice and non-human

primates) [105–108]. In this model, there would be a rudimen-

tary pre-existing forebrain vocal pathway within the vertebrate

motor learning pathway, but in the more complex vocal lear-

ners these vocal pathway neurons independently expanded

and segregated out of the motor learning pathway. However,

it is also possible that initially the motor learning pathway

duplicates within the non-vocal motor learning circuits to

form a limited vocal learning circuit, which subsequently

evolves enhanced functions and moves outside of to become

adjacent to the motor learning circuit.

Resolving these hypotheses will require more compara-

tive research. The nuances for limited vocal plasticity and

an associated neural circuit in mice and non-human primates

are also still an ongoing debate that requires further investi-

gation [104–111]. Thus far, of all the hypotheses proposed,

we believe the existing data most support the motor origin

and duplication hypothesis for vocal learning pathways.

4. Other examples of duplicated morphological
structures and structural subdivisions in the
evolution of functional complexity

If brain pathway evolution by duplication were possible for

vocal learning circuits, then it could be one broad mechanism
of brain evolution. The presence of the well-known parallel

cortical–basal ganglia–thalamic–cortical loops through the

anterior forebrain of mammals and birds is consistent with

such an idea. These parallel loops could be replicates of a

basic motor learning pathway design. Since all of the cortex is

connected with all of the basal ganglia and thalamus [112],

when a cortex region is duplicated, one would expect to see a

concomitant duplication in the connected basal ganglia and

thalamic regions [22,33]. However, our finding of only cortical

shell song nuclei duplications thus far in parrots indicates that

it could be possible that the duplicated cortical regions co-

innervate the non-duplicated striatal and thalamic regions

(figure 2c). Such flexibility would allow for greater diversity in

neural circuit evolution balanced with the constraint of limited

cranial space to accommodate increases in brain size owing

to duplications.

Studies of non-human primate motor cortex are consistent

with the idea of duplicated brain components. For example,

studies using retrograde transneuronal transport of the rabies

virus from single muscles of rhesus macaque monkeys to ident-

ify layer 5 cortico-motoneuronal (CM) cells in the primary

motor cortex (M1) have shown that the M1 region has two sub-

divisions [113]. The rostral subdivision of macaque M1 has

been proposed to be an ‘older’ region as it contains fewer

CM cells that make indirect projections to spinal cord MN

and is present in most mammals requiring the indirect use of

the spinal cord to influence motor output. The caudal subdivi-

sion of macaque M1 is proposed to be ‘newer’ as it contains the

more rarely found CM cells that make direct projections to MN

in the spinal cord and brainstem, including controlling

shoulder, elbow and finger muscles to produce highly skilled

motor actions. Based on these and other findings, it is generally

proposed that the direct CM system of M1 is a recently evolved

brain structure that conferred evolutionarily novel functions in

the motor system in primates, including independent voluntary

control of finger movements, which are more advanced in pri-

mates compared with non-primates [114–120]. Assuming that

the evidence continues to support differences between species,

one hypothesis, like the one we propose for vocal learning path-

ways, is that the newer caudal M1 region is a duplication of the

older rostral M1 region, but with a divergent connection of the

CM cells from cortical layer 5.

Examples of morphological duplications or subdivisions to

enhance complexity also exist outside of the nervous system.

Many animals, such as annelids, have repeated parallel body

segments or specialized limb types among species, where the

replicated parts are thought to be owing to a repeating devel-

opmental genomic programme [121,122]. A striking example

of independently evolved morphological duplications is the

diversification of the adductor mandibular muscles in teleost

fish jaws, which have independently subdivided several

times during tetraodontiform evolution [123–125]. Most of

these divisions have been incomplete, which suggests that

some parts were subfunctionalized instead of duplicated. The

duplicated adductor mandibulae muscles continue to maintain

similar morphological characteristics, but with increased mor-

phological complexity associated with their functional

complexity resulting in finer motor control for feeding [125].

Overall, structural duplications have been proposed to be

one mechanism that allows for morphological decoupling

[126]. Making structures, such as brain circuits, functionally

independent of one another may provide increased comple-

xity and opportunity for modification and diversification
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[126–128]. In this regard, brain evolution by brain region

duplication, brain pathway duplication or structure subdivi-

sion may follow a general mechanism of morphological

evolution to enhance functional complexity. Testing these

hypotheses will be best informed by deciphering the cellular

and molecular mechanisms for the development of additional,

parallel circuits in the brain.
 blishing.org
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5. Proposed cellular and molecular mechanisms
for evolution of brain pathway duplications

During development, neural stem cell/progenitor cells that give

rise to forebrain circuits derive mainly from stem cells in the

ventricular zone [129–131]. The daughter cells travel to their

positions either by radial migration perpendicularly away

from the ventricle (such as excitatory neurons within layers of

the mammalian cortex), and/or by tangential migration parallel

to the ventricle (such as inhibitory neurons that migrate from

the basal ganglia into the cortex) [132–134]. Their local brain

region identity is thought to be controlled by patterning tran-

scription factors, such as the homeobox (Hox) genes [135,136].

Once daughter cells reach their target location in the brain,

they find their connecting partners in a process that requires

cell adhesion and axon guidance genes [137,138]. Given these

principles, we propose that one possible mechanism for the

evolution and development of duplicated segmented brain cir-

cuits is that there is a set of transcription factors that not only

control the position of such circuits, but also the number of

replicates of that circuit. A genetic change in such transcription

factors could result in a new parallel circuit, such as that for

vocal learning. Thereafter, changes in axon guidance genes in

the new circuit would control divergence in connectivity rela-

tive to the older circuit. This begs the question of what kind

of genetic change would this be?

We propose that gene duplication could be one such mech-

anism. Gene duplications have been found to influence the

development and function of many organs and tissues, includ-

ing brains, eyes and wings [11,139–147]. As proposed originally

by Ohno [13,14], many consider gene duplication to be one of

the most important factors in evolution, including neofunctio-

nalization, subfunctionalization and evolutionary innovations.

Gene duplication allows the old gene copy to maintain its func-

tion and the new copy to evolve new functions. Even theories

on gene evolution through gene duplication have influenced

the theories on brain evolution by morphological duplication

[139,141]. The concept of neofunctionalization of genes [14]

and subfunctionalization of genes [148] match those proposed

for structural duplications [128,149,150].

One of the most well-studied and significant examples of

duplicated genes controlling duplicated, repeated or segmen-

ted morphological structures are the Hox genes. These are

transcription factors that control the anterior–posterior body

plan axis and are situated in the genome in the same order as

the body plan they control [136,151,152]. They are duplicated

to different degrees in different animal lineages, with greater

complexity and more anatomical segments correlated with

more duplications [153]. Many invertebrates and Amphioxus
possess one Hox gene cluster, whereas the remaining ver-

tebrates have four Hox gene clusters, in part owing to two

whole-genome duplication events that occurred early in ver-

tebrate evolution [151,154–158]. Within the brain, the Hox
genes and the greater Hox gene transcription factor
superfamily (including OTX, EMX, DMBX, GBX and EN) are

involved in brain division and subdivision segmentation

[135]. They do so by controlling regional neuronal identity,

stem cell progenitors, cell migration and cell death [159,160].

We propose that one possible mechanism for brain

pathway duplication could be a local duplication of Hox super-

family genes in the genome segments that control forebrain

development. One prediction of this hypothesis is that one

should find such genes uniquely duplicated in vocal learning

species that control brain development. Recently, based on

comparative genomic analyses across the bird family tree,

unique gene duplications were found in the songbird lineage

and some of these genes had enriched or nearly exclusive

expression in the song learning nuclei [161]. It remains to be

determined, however, if any of these transcription factors

belong to the Hox gene family.

We caution that we are not suggesting a one-to-

one relationship of gene duplication with morphological

duplication. There are many examples of gene duplications

resulting in modifications of existing structures and functions.

An example relevant to the topic of vocal learning and

cognition is the Slit-Robo GTPase 2 gene (SRGAP2), which has

undergone two partial duplications (SRGAP2B and

SRGAP2C) uniquely in humans relative to other mammals

[26,27,162]. The duplicated copies act as competitive inhibitors

to slow cortical dendritic development of already existing brain

pathways, which in turn allow greater neural plasticity into

adulthood. SRGAP2 modulates activity of the ROBO axon

guidance receptors, which are in turn activated by the SLIT

family of protein ligands to modulate axonal/dendritic

migration and branching in various brain regions [163–167].

Intriguingly, the SLIT1 ligand is uniquely downregulated in

the song production nucleus RA analogue of vocal learning

birds (songbird RA, parrot AAC and hummingbird VA)

[56,68] and the analogous human LMC [50], which would

mean that there could be a synergistic effect of the duplicated

SRGAP2 GTPase and lower SLIT1 levels in the duplicated

vocal motor pathways in humans. Another recent example of

partial duplication includes another GTPase, the ARHGAP11B
gene, which arose from ARHGAP11A in humans after separ-

ation from the chimpanzee lineage [168]. The duplicated copy

of the ARHGAP11A gene causes cortical area expansion, and

this expansion causes folding, which we surmise could be

owing to the duplication.

Advances in genetic technologies have also allowed scien-

tists to test some hypotheses on duplicating or eliminating

neural structures genetically. For example, ectopic visual

responsive eyes were induced in Drosophila with the addition

of an extra copy of one transcription factor, Pax6, expressed

during development in another part of the body [169]. Another

study showed that electroporating an extra copy of the fibro-

blast growth factor 8 (FGF8) gene locally in the posterior

cortical primordium of mouse embryos causes a partial dupli-

cation of the primary somatosensory cortex, with concomitant

input from the thalamus to its layer 4 cortical cells, as shown

by the presence of ectopic somatosensory barrel fields [170].

In vertebrates, the expression of the Hox1a gene marks the ear-

liest stages of regionalization of the developing hindbrain. Mice

mutant for the Hoxa1 gene lack the developing rhombomere 2

(r2) brain region, but the r2 neurons escape apoptosis and

develop within r3 and r4, to still incorporate into appropriate

circuits to drive the rhythm of breathing [171]. This suggests

to us that Hox1a is needed for development of a separate,
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repeated rhombomere region, but that other factors are suffi-

cient to develop the associated circuit within another circuit.

An example of loss of gene function and functional redundancy

leading to duplication of structure is the Mauthner (M) cells, a

pair of reticulospinal neurons that control escape behaviour in

zebra fishes [139,172–174]. During the escape response, if the

threatening stimulus arrives from the left side, the left M

cell fires, and its action potential travels to the right side so

that the fish swerves to the right side owing to the contraction of

the muscles on the right side to avoid the threat. Mutation

of the notch1a/deadly seven (des) in zebra fish results in the devel-

opment of extra M cells in r4 [175]. All extra copies of the M cells

are responsive to the escape stimuli, suggesting that when

duplication of the cells takes place, they receive the appropriate

sensory information and respond in a normal way indicating

adaptive plasticity of the escape-response circuit.

Other plausible hypotheses of molecular mechanisms that

could lead to brain pathway duplication include: (i) changes

in splice variants of a gene [176], which we propose could

switch on and off at different developmental times to control

the generation of parallel circuits; (ii) changes in the cis-

regulatory elements of genes, which we propose again

would change the reiterative use of a gene network in parallel

developing circuits; and (iii) loss of function in a gene that

may normally inhibit development of some circuits.

Overall, the various hypotheses may be tested with recent

advances in genomics, transcriptomics and gene manipula-

tions, using complete genome sequences from multiple

species with and without the brain pathways of interest

[93]. Until then, the existing evidence supports the possibility

that brain pathway evolution through brain pathway duplication
could be one mechanism to generate higher-order complexity

in highly evolved animals.
6. Conclusion
In this review, we discussed new evidence from studies

in birds, primates and other species that suggests that brain
pathways for a novel convergent trait, vocal learning, possi-

bly evolved by duplication from adjacent motor learning

pathways. The continuum hypothesis of a pre-existing vocal

learning pathway that was independently enhanced in

vocal learners is an alternative, but could be compatible with

the duplication hypothesis if the duplication occurs within an

existing pathway, as seen with Hox1a r2 manipulations.

Whether by duplication or enhancement, the pathways have

diverged from their adjacent brain regions by specializations

of genes involved in neural connectivity. These divergences

may have been heavily selected upon for immediate and

substantial phenotypic benefits. Despite these divergences,

the vocal learning circuits share many properties with the adja-

cent motor pathways. The findings of the parrot core and shell

song system lead us to wonder if humans evolved consecutive

or simultaneous multiple duplications of a vocal learning path-

way leading to more advanced spoken language abilities.

Moreover, findings from studies outside of the vocal learning

systems indicate that brain region or pathway duplication

could be a general mechanism of brain evolution.

Answers to these questions can now be determined through

comparative neurobiology and comparative genomics research.

With the recent availability of genomes across the avian

[93,177,178] and eventually primate [179,180] family trees, it

becomes possible to discover candidate genes. They can then

be studied with advanced technologies, such as transcriptomics

and genome editing tools, including CRISPR-Cas9, RNAi,

TALENs, Cre-Lox systems and more. The theoretical framework

presented here will help guide use of these technologies.
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