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Abstract 
The Southern Corroboree frog (Pseudophryne corroboree; Anura; 
Myobatrachidae) is a Critically Endangered amphibian, according to 
the IUCN, and is endemic to the Snowy Mountains region of 
Kosciuszko National Park in New South Wales, Australia. This species 
has been driven to functional extinction by the introduction of the 
fungal disease, chytridiomycosis. Here we provide the first reference 
genome for P. corroboree. Using PacBio HiFi sequencing, Arima Hi-C, 
and Bionano optical mapping, we produced a chromosome-level 
genome assembly. Additionally, we generated a reference 
transcriptome based on multiple tissues from both male and female 
individuals to support genome annotation. The resulting genome 
spans 8.87 Gb across 12 chromosomes, with a contig N50 of 6.8 Mb. 
This research provides a phased, annotated genome assembly along 
with transcriptomic resources to facilitate future conservation 
genomic studies of P. corroboree. Furthermore, the genome offers an 
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invaluable resource for taxonomic and evolutionary research, 
particularly given the nearest available chromosome-level reference 
genome is from Mixophyes fleayi, a species that last shared a common 
ancestor with P. corroboree 80 million years ago.

Keywords 
Genome assembly, reference genome, Anura, Critically Endangered, 
Myobatrachidae, conservation breeding
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Species taxonomy
Eukaryota; Opisthokonta; Metazoa; Eumetazoa; Bilateria;  
Deuterostomia; Chordata; Craniata; Vertebrata; Gnathostomata; 
Teleostomi; Euteleostomi; Sarcopterygii; Dipnotetrapodomorpha;  
Tetrapoda; Amphibia; Batrachia; Anura; Neobatrachia; Myo-
batrachoidea; Myobatrachidae; Myobatrachinae; Pseudophryne  
Pseudophryne corroboree Moore, 1953 (NCBI:txid495146).

Background
The genome of a Southern Corroboree frog (Pseudophryne  
corroboree), referred to as “Gyack” by Australian Indigenous  
people1, was sequenced as part of the Vertebrate Genomes Project 
(VGP), a collaborative effort aiming to produce high-quality  
reference genomes of all named vertebrate species2,3. Here  
we present a chromosome-level complete genome assembly for 
P. corroboree, from a male captive-bred specimen (BioSample  
SAMN32631236) provided by Melbourne Zoo (Victoria,  
Australia).

The Southern Corroboree frog is one of Australia’s most  
threatened species of amphibians4. Driven to functional  
extinction in the wild after the introduction of the fungal  
pathogen, Batrachochytrium dendrobatidis, into Australia in 
the late 1970s, this species is now reliant on ex situ conservation  
breeding for its continued existence5,6.

Pseudophryne corroboree is a sub-alpine frog restricted to 
sphagnum peat bogs from 1300 and 1760 meters in elevation 
in Kosciuszko National Park in the Snowy Mountains region  
of New South Wales (NSW), Australia7. The female lays ter-
restrial eggs in mid- to late summer that are attended by the 
male throughout development8,9. Eggs hatch into tadpoles after 
flooding by winter rains8. Pseudophryne corroboree have bright 
yellow and black coloration. Unlike many other poisonous frogs 
(e.g., Dendrobatidae, Mantellidae), they are able to synthesize  
toxins in addition to obtaining them from their diets10. The sister  
species, P. pengilleyi, has declined more slowly4,11, which may  
be due to greater resistance to chytridiomycosis in this species.

Various efforts are underway to restore P. corroboree to the 
wild including conservation breeding and reintroduction, in situ  
enclosures, conservation genomics analysis, and targeted genetic 
intervention6,12–15. Here we report a high-quality reference 
genome and transcriptome to serve as a key resource for these  
efforts by facilitating informed genetic management of the  
species and efforts to increase resistance to the chytrid  
pathogen12,16.

Methods
Sample acquisition
An adult captive-bred male P. corroboree (Zoo Record ID: 
B50597), obtained from the conservation breeding program at  
Melbourne Zoo (Victoria, Australia), was used to generate the ref-
erence genome. Two additional captive animals: 1 male (B40300; 
the sire of the focal animal, wild-collected from unknown loca-
tion in 2007) and 1 female (B40182; wild-collected from Upper  
Jagumba, NSW in 2007) were also sequenced using short reads.  
All frogs were humanely euthanized at the University of  
Melbourne (Victoria, Australia) using a buffered solution of 
0.2% tricaine mesylate (MS-222) and decapitation (University of  

Melbourne Animal Ethics permit #10267). Using sterile tech-
niques, multiple tissues including heart, liver, kidney, muscle,  
gonads, brain, and whole body were collected from each animal 
and flash frozen in liquid nitrogen. The tissues were immediately 
transferred to -80°C until they were sent for genome sequenc-
ing. Tissues were shipped on dry ice to the Vertebrate Genomics  
Laboratory (Rockefeller University, New York, USA) for nucle-
otide extraction and sequencing (Australian wildlife trade export 
permit #PWS2020-AU-001530).

Nucleic acid extraction and sequencing
For PacBio HiFi sequencing, high molecular weight DNA 
(HMW DNA) was extracted from a flash frozen kidney using the  
MagAttract HMW DNA Kit (Qiagen 67563). The tissue was 
stored at -80°C and kept on dry ice until homogenized with the  
Qiagen TissueRuptor II (Cat. No. 9002755). The DNA was  
quantified with the Qubit 3 fluorometer (Invitrogen Qubit  
dsDNA Broad Range Assay cat no. Q32850) and fragment size  
was assessed with the Agilent Fragment Analyzer.

After isolation, DNA was sheared using the Megaruptor 3 
(Diagenode, Denville, NJ, USA) to attain a 15–20 Kb PacBio  
library insert size. The PacBio HiFi library was prepared with 
the SMRTbell Express Template Prep Kit 2.0 (PN 100-938-900)  
following the manufacturer’s procedure (PN 101-853-100 Ver-
sion 03) and then size-selected with Pippin HT (Sage Science, 
Beverly, MA, USA). The PacBio library was sequenced on a  
Sequel IIe instrument with 8M SMRT cells and Sequencing  
Plate 2.0 (PN 101-820-200).

For Hi-C sequencing, libraries were prepared from liver using 
the Arima-HiC 2.0 kit (Arima Genomics, Carlsbad, CA, USA)  
following the manufacturer’s protocol. The library was then 
sequenced with the Illumina NovaSeq 6000 platform with 2×150 
bp read length at Psomagen, Inc. (Rockville, MD, USA).

For Bionano optical mapping, HMW DNA was extracted  
from the kidney with the Circulomics Nanobind Tissue Big 
DNA Kit and fragment size was evaluated with a pulsed field gel  
electrophoresis (Pippin Pulse, SAGE Science, Beverly, MA). 
The DNA was labelled using direct labelling enzyme (DLE1) 
and Bionano Prep Direct Label and Stain (DLS) protocol  
(document number 30206) and then labels sequenced on a  
Bionano Saphyr instrument.

Total RNA was extracted from five tissues from the focal 
male (B50597: testes, brain, muscle, liver, and whole body)  
and four tissues from the female (B40182: ovary, muscle, 
liver, and whole body) using a QIAGEN RNAeasy Protect kit  
(cat. no. 74124). RNA quantity was determined using a Qubit 
3 fluorometer (Invitrogen Qubit RNA High Sensitivity (HS)  
Kit (cat. no. Q32852) and RNA integrity (RIN) score  
determined using an Agilent Fragment Analyzer. RNA  
paired-end sequencing was performed on an Illumina NovaSeq 
6000 machine.

Short read Illumina WGS sequencing of the presumed parents 
was performed using HMW DNA extracted from kidney tissue  
from the presumed parents (B40300, B40182) of the focal 
frog. The library was sequenced with the Illumina NovaSeq  
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6000 platform with 2×150 bp read length at Psomagen, Inc.  
(Rockville, MD, USA).

Genome assembly, curation, evaluation, and annotation
Assembly
The assembly was performed using the VGP Pipeline 2.0 with  
Hi-C phasing3. First, HiFi reads were screened for PacBio  
adapters using cutadapt 4.0 to remove any matching reads  
before assembly. Contig assembly was then performed using 
hifiasm version 0.16.1 in Hi-C phased mode to obtain two  
phased haplotypes. Contigs of each haplotype were then  
scaffolded individually using Bionano Solve 3.7.0 followed  
by YaHS 1.2a.

Assembly curation
Haplotype 2 had higher assembly metrics and thus was selected 
for manual curation and to be used as the main reference.  
The assembly was decontaminated using the Assembly Screen 
for Cobionts and Contaminants (ASCC) pipeline (https://pipe-
lines.tol.sanger.ac.uk/ascc; Aunin et al. in prep). Flat files and  
Hi-C contact maps used in curation were generated via  
the TreeVal pipeline17. Manual curation was conducted using 
the rapid curation pipeline documented at (https://gitlab.com/
wtsi-grit/rapid-curation; Wood et al. in prep) primarily using  
PretextView and HiGlass18 with additional insights provided 
by JBrowse219. Scaffolds were visually inspected, and assem-
bly errors corrected as described in Howe et al.20. Any identified  
contamination, missed joins, and mis-joins were amended, and 
duplicate sequences were tagged and removed.

Evaluation of the final assembly
The final assembly was post-processed and evaluated with Next-
flow21. DSL2 pipelines “sanger-tol/readmapping”22, “sanger-tol/ 
genomenote”23, and “sanger-tol/blobtoolkit”24. The pipeline  
sanger-tol/readmapping aligns the Hi-C reads with bwa-mem225 
and combines the alignment files with SAMtools26. The sanger-
tol/genomenote pipeline transforms the Hi-C alignments into a  
contact map with BEDTools27 and the Cooler tool suite28, which 
is then visualised with HiGlass18. It also provides statistics about 
the assembly with the NCBI datasets report29, computes k-mer 
completeness and QV consensus quality values with FastK and 
MERQURY.FK, and provides a completeness assessment with 
BUSCO30.

The sanger-tol/blobtoolkit pipeline is a Nextflow port of the  
previous Snakemake Blobtoolkit pipeline31. It aligns the  
PacBio reads with SAMtools and minimap232 and generates 
coverage tracks for regions of fixed size. In parallel, it queries  
the GoaT database33 to identify all matching BUSCO lineages 
to run BUSCO30. For the three domain-level BUSCO lineages, 
the pipeline aligns the BUSCO genes to the Uniprot Reference  
Proteomes database34 with DIAMOND blastp35. The genome 
was split into chunks according to the density of the BUSCO  
genes from the closest taxonomically lineage, and each chunk 
was aligned to the Uniprot Reference Proteomes database 
with DIAMOND blastx. Genome sequences that had no hit  
were then chunked with seqtk and aligned to the NT database 
with blastn36. All outputs were then combined with the blobtools  
suite into a blobdir for visualisation.

The genome assembly and evaluation pipelines were devel-
oped using the nf-core tooling37, using MultiQC38, and mak-
ing extensive use of the Conda package manager, the Bioconda  
initiative39, the Biocontainers infrastructure40, and the Docker41  
and Singularity42 containerisation solutions.

Only one of the presumed parents, the male frog (B40300), 
was confirmed to be an actual parent. As a result, we could  
not utilise parent WGS data for haplotype phasing.

The curated assemblies were submitted to NCBI (BioProject 
PRJNA928730), and haplotype 2 was annotated by the NCBI 
Eukaryotic Genome Annotation Pipeline43 using RNA-Seq data  
from the kidney and liver from the male frog (SAMN32631236) 
and brain, ovaries, and whole body from the female frog 
(SAMN39610159). This annotated RefSeq version of this assembly 
has the accession number GCF_028390025.1 (PRJNA1082331).

Repeats were de novo modelled with RepeatModeler (Apptainer 
v. 1.2.3)44 and then annotated using RepeatMasker (v. 4.1.2-p1)45  
with a concatenated library of genome-specific repeats gener-
ated from RepeatModeler and the Dfam amphibian repeat library 
(v. Dfam.h5)46.

Results
Genome sequence report
The assembly of a male Pseudophryne corroboree (Figure 1)  
resulted in a genome that was 8.87 Gb in length across  
12 chromosomes. The genome was sequenced using PacBio 
HiFi reads, generating a total of 230 Gb from 17,266,474 reads,  
providing approximately 26.9-fold coverage. Primary assem-
bly contigs were scaffolded with chromosome conforma-
tion Hi-C data, which produced 381 Gb from 1,266,207,409  
reads, yielding an approximate coverage of 44.5-fold. Specimen 
and sequencing information are summarised in Table 1.

Manual assembly curation corrected 280 missed joins or  
mis-joins and 1 haplotypic duplication, reducing the assembly 
length by 0.79% and the scaffold number by 11%, and increas-
ing the scaffold N50 by 24.6%. The final assembly has a total 
of 3,127 scaffolds, with 2,699 gaps, and a large scaffold N50  
of 846.9 Mb and a contig N50 of 6.8 Mb (Table 2), well 
surpassing the VGP minimum metrics of 10 and 1 Mb,  
respectively2. The snail plot in Figure 2 provides a summary 
of the assembly statistics, while the distribution of assembly  

Figure 1. Photograph of a captive-bred Pseudophryne 
corroboree. Photo by C. Doughty.
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Table 1. Specimen and sequencing data for Pseudophryne corroboree.

Project information

Study title Pseudophryne corroboree overview

Umbrella BioProject PRJNA921726

Species Pseudophryne corroboree

BioSample SAMN32631236

NCBI taxonomy ID 495146

Specimen information

Technology Specimen ID (sex) BioSample accession Organism part

PacBio long read sequencing B50597 (male) SAMN32631236 Kidney, liver

Hi-C sequencing B50597 (male) SAMN32631236 Liver

RNA sequencing B50597 (male) SAMN32631236 Brain, muscle, testes, liver, whole body

RNA sequencing B40182 (female) SAMN39610159 Ovary, muscle, liver, whole body

Illumina DNA sequencing B40182 (female) SAMN39610159 Kidney

Illumina DNA sequencing B40300 (male) SAMN40858189 Kidney

Table 2. Genome assembly data for Pseudophryne corroboree, aPseCor3.hap2.

Genome assembly

Assembly name aPseCor3.hap2

Assembly accession haplotype GCA_028390025.1 haplotype 2; GCA_
028390055.1 haplotype 1

Assembly length 8872758793

Chromosome assembly length 8190274449

Number of contigs 5826

Contig N50 length (Mb) 6.8

Number of scaffolds 3127

Scaffold N50 length (Mb) 846.9

Longest scaffold (Mb) 947.25

Assembly metrics* Benchmark

Consensus quality (QV) 58.5 ≥ 50

k-mer completeness 97.66% ≥ 95%

BUSCO** C:89.8% [S:88.3%, D:1.5%],  
F:3.0%, M:7.2%, n:5310

C ≥ 95%

Percentage of assembly mapped to 
chromosomes (N=12)

92.3% ≥ 95%

Genome annotation of assembly GCF_028390025.1-RS_2024_02 at RefSeq

Number of protein-coding genes 24591

Number of non-coding genes 128683

Number of gene transcripts 183540
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Figure 2. Genome assembly metrics for Pseudophryne corroboree, aPseCor3.hap2. The BlobToolKit snail plot shows N50 scaffold 
metrics and BUSCO gene completeness. An interactive version of this figure is available at: https://blobtoolkit.genomehubs.org/view/GCA_
028390025.1/dataset/GCA_028390025.1/snail.

scaffolds by GC proportion and coverage is shown in Figure 3.  
The cumulative assembly plot in Figure 4 shows curves for  
subsets of scaffolds assigned to different phyla. Most (92.3%) of 

the assembly sequence was assigned to 12 chromosomal-level  
scaffolds. These chromosome-scale scaffolds were confirmed by 
the Hi-C data and are named in order of size (Figure 5; Table 3).

Genome repeat content

Repeat element Number of elements % of genome

DNA transposons 1749727 11.7

LINEs 821317 5.75

SINEs 134337 1.04

LTRs 1435160 27.15

Simple 1353528 0.82

Unclassified 10152528 28.08
* Assembly metric benchmarks are adapted from column VGP-2020 of “Table 1: Proposed 
standards and metrics for defining genome assembly quality” from Rhie et al. (2021).
** BUSCO scores based on the tetrapoda_odb10 BUSCO reference set using version 5.4.3. C = 
complete [S = single copy, D = duplicated], F = fragmented, M = missing, n = number of orthologues 
in comparison. A full set of BUSCO scores is available at https://blobtoolkit.genomehubs.org/view/
GCA_028390025.1/dataset/GCA_028390025.1/busco.

Page 6 of 11

Wellcome Open Research 2025, 10:228 Last updated: 30 JUN 2025

https://blobtoolkit.genomehubs.org/view/GCA_028390025.1/dataset/GCA_028390025.1/snail
https://blobtoolkit.genomehubs.org/view/GCA_028390025.1/dataset/GCA_028390025.1/snail
https://blobtoolkit.genomehubs.org/view/GCA_028390025.1/dataset/GCA_028390025.1/busco
https://blobtoolkit.genomehubs.org/view/GCA_028390025.1/dataset/GCA_028390025.1/busco


Figure 3. BlobToolKit plot of base against GC proportion for genome assembly Pseudophryne corroboree, aPseCor3.hap2.  
Circles are sized in proportion to sequence length. Histograms show the distribution of sequence length sum along each axis. Base 
coverage values are log10 transformed. An interactive version of this figure is available at: https://blobtoolkit.genomehubs.org/view/ 
GCA_028390025.1/dataset/GCA_028390025.1/blob?plotShape=circle.

Figure 4. Genome assembly of Pseudophryne corroboree, aPseCor3.hap2: BlobToolKit cumulative sequence plot. The grey line 
shows cumulative length for all sequences. Coloured lines show cumulative lengths of sequences assigned to each phylum using the 
buscogenes taxrule. An interactive version of this figure is available at: https://blobtoolkit.genomehubs.org/view/GCA_028390025.1/
dataset/GCA_028390025.1/cumulative.
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Figure 5. Hi-C contact map of the curated aPseCor3.hap2 assembly, visualised using HiGlass. Chromosomes are shown in order 
of size from left to right and top to bottom. An interactive version of this figure may be viewed at https://genome-note-higlass.tol.sanger.
ac.uk/l/?d=RTD6MMzAT-mgaBhXdbrKig.

Table 3. Chromosomal pseudomolecules 
in the genome assembly of Pseudophryne 
corroboree.

GenBank 
accession

Name Length 
(Mb)

GC%

CM051801.1 1 1251.52 45.5

CM051802.1 2 1055.99 46

CM051803.1 3 808.54 46

CM051804.1 4 947.25 45.5

CM051805.1 5 852.35 45.5

CM051806.1 6 846.89 45.5

CM051807.1 7 518.98 46

CM051808.1 8 493.02 46

CM051809.1 9 483.89 46

CM051810.1 10 387.42 46

CM051811.1 11 366.57 46

CM051812.1 12 177.84 46.5

completeness of 89.8% (single = 88.3%, duplicated = 1.5%), 
using the tetrapoda_odb10 reference set (n = 5,310). K-mer  
completeness for the combined haplotypes was 97.66% 
complete (aPseCor3.hap1 = 91.91% and aPseCor3.hap2  
= 91.96%).

A considerable portion (76%) of the P. corroboree genome  
consisted of repeats, with the majority of these (27%) classified  
as Long Terminal Repeats (LTRs; Table 2).

Ethics and consent
Frogs were humanely euthanised following University of  
Melbourne (Victoria, Australia) Animal Ethics permit #10267. 
Tissue samples were exported for sequencing at Rockefeller  
University (New York, USA) under Australian wildlife trade  
export permit (#PWS2020-AU-001530).

Data availability
NCBI Archive: Pseudophryne corroboree overview. The genome 
sequence is released openly for reuse. The Pseudophryne  
corroboree genome sequencing initiative is part of the Verte-
brate Genomes Project (VGP). Further, raw data and assembly 
accession identifiers are reported in Table 1 and Table 2. Rel-
evant software tool versions and sources are listed in Table 4.  
Interactive genome figures are available at https://blobtoolkit.
genomehubs.org/.

The estimated Quality Value (QV) of the final assembly is 
58.5 (no more than 1 error per ~1Mb) and BUSCO v5.5.0  
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Table 4. Software tools: versions and sources.

Software tool Version Source

BEDTools 2.30.0 https://github.com/arq5x/bedtools2

BLAST 2.14.0 ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/

BlobToolKit 4.3.7 https://github.com/blobtoolkit/blobtoolkit

BUSCO 5.4.3 and 5.5.0 https://gitlab.com/ezlab/busco

bwa-mem2 2.2.1 https://github.com/bwa-mem2/bwa-mem2

Cooler 0.8.11 https://github.com/open2c/cooler

DIAMOND 2.1.8 https://github.com/bbuchfink/diamond

fasta_windows 0.2.4 https://github.com/tolkit/fasta_windows

FastK 427104ea91c78c3b8b8b49f1a7d6bbeaa869ba1c https://github.com/thegenemyers/FASTK

Gfastats 1.3.6 https://github.com/vgl-hub/gfastats

GoaT CLI 0.2.5 https://github.com/genomehubs/goat-cli

Hifiasm 0.19.8-r603 https://github.com/chhylp123/hifiasm

HiGlass 44086069ee7d4d3f6f3f0012569789ec138f42b84aa44357
826c0b6753eb28de

https://github.com/higlass/higlass

Merqury.FK d00d98157618f4e8d1a9190026b19b471055b22e https://github.com/thegenemyers/MERQURY.FK

MitoHiFi 3 https://github.com/marcelauliano/MitoHiFi

MultiQC 1.14, 1.17, and 1.18 https://github.com/MultiQC/MultiQC

NCBI Datasets 15.12.0 https://github.com/ncbi/datasets

Nextflow 23.04.0-5857 https://github.com/nextflow-io/nextflow

PretextView 0.2 https://github.com/sanger-tol/PretextView

purge_dups 1.2.5 https://github.com/dfguan/purge_dups

samtools 1.16.1, 1.17, and 1.18 https://github.com/samtools/samtools

repeatmodeler Apptainer v. 1.2.3 https://github.com/Dfam-consortium/RepeatModeler/
blob/master/RepeatModeler

repeatmasker v. 4.1.2-p1 https://github.com/Dfam-consortium/RepeatMasker

sanger-tol/ascc - https://github.com/sanger-tol/ascc

sanger-tol/
genomenote

1.1.1 https://github.com/sanger-tol/genomenote

sanger-tol/
readmapping

1.2.1 https://github.com/sanger-tol/readmapping

Seqtk 1.3 https://github.com/lh3/seqtk

Singularity 3.9.0 https://github.com/sylabs/singularity

TreeVal 1.0.0 https://github.com/sanger-tol/treeval

YaHS 1.2a.2 https://github.com/c-zhou/yahs
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