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Abstract

The Rock Ptarmigan (Lagopus muta) is a cold-adapted, largely sedentary, game bird with a Holarctic distribution. The species represents 
an important example of an organism likely to be affected by ongoing climatic shifts across a disparate range. We provide here a high- 
quality reference genome and mitogenome for the Rock Ptarmigan assembled from PacBio HiFi and Hi-C sequencing of a female bird 
from Iceland. The total size of the genome is 1.03 Gb with a scaffold N50 of 71.23 Mb and a contig N50 of 17.91 Mb. The final scaffolds 
represent all 40 predicted chromosomes, and the mitochondria with a BUSCO score of 98.6%. Gene annotation resulted in 16,078 pro
tein-coding genes out of a total 19,831 predicted (81.08% excluding pseudogenes). The genome included 21.07% repeat sequences, 
and the average length of genes, exons, and introns were 33605, 394, and 4265 bp, respectively. The availability of a new reference- 
quality genome will contribute to understanding the Rock Ptarmigan’s unique evolutionary history, vulnerability to climate change, 
and demographic trajectories around the globe while serving as a benchmark for species in the family Phasianidae (order Galliformes).
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Significance Statement

The Rock Ptarmigan is a widespread bird species of economic 
and nutritional importance to large portions of the northern 
hemisphere. Only a tiny fraction of the Rock Ptarmigan’s 
genome was previously reported and studied. The effort 
undertaken to sequence and annotate the whole genome 
provides an ability to understand the species at a molecular 
level. This vertebrate genome allows for new critical assess
ment of the Rock Ptarmigan and related species at individ
ual, population, and environmental scales.
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Introduction
The Rock Ptarmigan (Lagopus muta) is a grouse species with a wide 
distribution across the arctic and subarctic northern hemisphere. 
It has seasonally variable plumage ranging from almost entirely 
white in the winter to heavily mottled gray, rust, and brown in 
the breeding months (Fig. 1). Birds of the genus Lagopus are notable 
for having feathered legs and feet which likely serve to insulate 
them in cold habitats. The Rock Ptarmigan can be considered as 

a ring species with variable genetic diversity across its circumpo
lar range (Sahlman et al. 2009; Kozma et al. 2019). Accordingly, 
Rock Ptarmigan are expected to be at long-term risk across 
much of their range due to ongoing climatic changes and limited 
suitable habitat (Costanzi and Steifetten 2019; Masanobu et al. 
2019).

With the expected declines in cold specialist species as global 
temperatures rise (Chamberlain et al. 2012; Scheffers et al. 2016; 
Scridel et al. 2018; Höglund et al. 2021), nonmigratory birds are par
ticularly valuable to science as they are likely to display many spe
cial adaptations necessary for life in the arctic or at high altitude. 
Some populations of Rock Ptarmigan are considered near- 
threatened or endangered due to long-term population loss and 
expected habitat declines (Icelandic Institute of Natural History 
2018; Kozma et al. 2018; Japanese Ministry of the Environment 
2020). The risks associated with declining genetic quality and en
vironmental changes are not well understood, but might be better 
assessed with genomic analysis (Bay et al. 2018; Formenti et al. 
2022). For populations with robust historical demographics such 
as the Icelandic Rock Ptarmigan (Nielsen 1986, 1999, 2011; 
Nielsen and Pétursson 1995; Brynjarsdóttir et al. 2003; Nielsen 
et al. 2004), a locally sourced reference genome is valuable for as
sessing demographic history.
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The species nearest relatives include other grouse in the subfam
ily Tetraoninae, although systematics in the order Galliformes re
main poorly resolved. The mitochondrial genome of Rock 
Ptarmigan was previously made available along with the mitochon
drial DNA of a sister species Willow Grouse (Lagopus lagopus; 
Sveinsdóttir and Magnússon 2017). The Willow Grouse and Rock 
Ptarmigan are believed to have diverged as recently as 2–5 million 
years ago (Persons et al. 2016) and are often studied together 
(Lucchini et al. 2001; Kozma et al. 2018). The white-tailed ptarmigan 
(Lagopus leucura) is the most closely related species with whole gen
ome data available, having a common ancestor with other Lagopus 
taxa no older than 3 million years ago, although the genome assem
bly is not currently annotated (Clark et al. 2016; Kozma et al. 2019; 
GenBank: GCA_019238085.1).

Here, we describe the first reference-quality genome assembly 
and annotations for Rock Ptarmigan. A combination of long-read 
and conformation capture sequencing technologies were used to 
assemble a 1.03 Gb haploid reference genome.

Materials and methods
Sample collection and PCR preparation
As basis for the reference genome assembly and annotation, fresh 
blood from a single female bird collected (shot) in Húsavík, 
northern Iceland, in 2018 was used (NCBI BioSample 
SAMN25144835), while additional, heart, muscle, brain, kidney, li
ver, ovaries, testes, and spleen from a second bird was collected 
for RNA-seq to aid in gene prediction (NCBI BioSample 
SAMN26436951, SAMN29421920, SAMN29421921, SAMN29 
421922, SAMN29421923, SAMN29421924, SAMN29421925, and 
SAMN29421926 respectively). DNA extraction was performed in 
the laboratories of SciLifeLab (Uppsala, Sweden). RNA was isolated, 
at University of Akureyri, using Beckman Coulter RNAClean XP 
(FisherScientific, USA). Materials from the birds used for the gen
ome assembly are stored at the Icelandic Institute of Natural 
History in Garðabær, Iceland (Accession no. RM13211).

Sequencing
Input QC of the DNA was performed using Dropsense, Qubit and 
Femto pulse to evaluate concentration, purity, and size. The sam
ple library was prepared according to Pacbio’s Procedure & 

Checklist—Preparing HiFi SMRTbell Libraries using the SMRTbell 
Express Template Prep Kit 2.0. The sample was sheared on 
Megaruptor 3 with speed setting 30. An Ampure bead purification 
was performed after the shearing. The samples were size selected 
using SageElf, according to Pacbio’s protocol. Fractions 1 was used 
for sequencing. Quality control of sheared DNA and SMRTbell 
libraries was performed on Fragment analyzer, using the Large 
Fragment standard sensitivity 492 kit. Primer annealing and poly
merase binding was performed using the Sequel II binding kit 2.0. 
The sample was sequenced on the Sequel II instrument, using the 
Sequel II sequencing plate 2.0 and the Sequel II SMRT Cell 8M, mo
vie time 30 h and pre-extension time 2 h. Whole genome sequen
cing was carried out at SciLifeLab in Uppsala, while Dovetail 
Genomics Hi-C Kits were processed on an Illumina NovaSeq 
6000 at SciLifeLab in Stockholm. RNA-seq was carried out on 
Illumina HiSeq2500 system Paired-end 2 × 125 cycles at deCODE 
genetics, Reykjavík.

Genome assembly
The genome was assembled following the Vertebrate Genome 
Project (VGP; Rhie et al. 2021) assembly pipeline. First, a kmer data
base was generated using Meryl (v. 1.3) from the PacBio HiFi reads 
for reference-free genome evaluation and downstream assembly 
QC. The kmer size was set to 21 after running the best_k.sh script 
for the expected genome size (∼1 Gb) in Merqury (v. 1.3; Rhie et al. 
2020). PacBio HiFi reads were assembled using hifiasm 
(v. 0.15.1-r334; Cheng et al. 2021), followed by a round of purge_ 
dups (v. 1.2.5; Guan et al. 2020) incorporating minimap2 
(v. 2.17-r941). Each of the previous steps was followed by assembly 
evaluation. This included contig/scaffold statistics computed 
using the Python library assembly_stats (v. 0.1.4), and BUSCO 
(v. 5.3.1), while completeness and quality value statistics of the as
sembly along with kmer spectrum plots were produced using 
Merqury (v. 1.3; Rhie et al. 2020). The assembly was scaffolded 
using the Hi-C reads. Briefly, reads were first aligned to the assem
bly using the VGP modified version of the Arima mapping pipeline 
that uses bwa mem (v. 0.7.17-r1188) and samtools (v. 1.19) for 
alignment and Picard (v. 2.10.3) for 5´ end filtering and duplication 
removal. Scaffolding was performed using Salsa2 (v. 2.3) and eval
uated using BUSCO and scaffold statistics.

Fig. 1. Species overview showing sexually dimorphic seasonal molt patterns of adult Rock Ptarmigan with white winter plumage and mottled breeding 
colors, alongside a range map showing the global distribution of Rock Ptarmigan above 30° north.
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The Hi-C reads were then mapped back to the scaffolded as
sembly using the same pipeline as in the previous step and the re
sulting bam file was converted to pretext format using PretextMap 
(v. 0.1.7).

The finalized assembly was screened for contamination and 
then manually curated (Howe et al. 2021). Curation was performed 
using gEVAL (Chow et al. 2016) and Hi-C contact maps visualized in 
HiGlass (Kerpedjiev et al. 2018) and PretextView (v. 0.2.5; see Fig. 2), 
resulting in 97 missed or mis-join corrections to the scaffolds pro
ducing a resolved chromosome level genome with 38 autosomes 
and, the Z and W sex chromosomes. Construction of microchromo
somes was investigated using the Mummer alignment tool (v 4.0.0: 
Marçais et al. 2018), although poor syntany was noted for compari
son with Gallus gallus and some likely remain unresolved.

The mitochondrial genome was assembled separately from 
both raw reads and contigs using MitoHifi (v. 2.2; Uliano-Silva 
et al. 2021) with automatic alignment to the Japanese Rock 
Ptarmigan (L. muta japonica; Yonezawa and Nishibori 2020) via 
built-in features from the MitoFinder dependency (v. 1.4.1; Allio 
et al. 2020).

The completed genome assembly is publicly available in NCBI 
under accession number GCA_023343835.1. The mitochondrial 
assembly is publicly available in NCBI under accession number 
OQ580988.

Genome annotation
The Rock Ptarmigan reference genome was annotated using the 
standard NCBI Eukaryotic Genome Annotation Pipeline version 
10.0. A detailed summary of the pipeline is available online at: 
https://www.ncbi.nlm.nih.gov/genome/annotation_euk/process/. 
In contrast to previous iterations, this version of the pipeline used 
RFAM (v. 14.6; Kalvari et al. 2021) for discovery of small noncoding 
RNA’s and STAR (Dobin et al. 2013) for alignment of RNA-seq reads 
from our supplementary tissues. The pipeline has stable use of 
several tools including BUSCO (v. 4.1.4; Manni et al. 2021) and 
Splign (Kapustin et al. 2008) among others.

For calculation of genomic masking, the Rock Ptarmigan gen
ome was masked with WindowMasker (Morgulis et al. 2006). 
Annotation of the mitochondrial genome was achieved via man
ual comparison with the extant published Icelandic Rock 
Ptarmigan mitogenome in addition to automatic annotation using 
MITOS WebServer (Bernt et al. 2013).

Results
Sequencing and assembly results
The final assembly sequence is 1,026,771,810 base pairs long, with 
71,937 gap bases (0.007%) across 210 spanned gaps (Fig. 3). The 
genome assembly includes 375 contigs arranged on 165 scaffolds. 
The scaffold N50 is 71,229,700 bp with an L50 of 5. The Contig N50 
is 17,905,263 bp with an L50 of 19.

Average coverage across the genome is 57.75×. In total 38 auto
somes were identified, with 18 unlocalized sequences among 
them. Additional W and Z allosomes were described with only a 
single unlocalized sequence found on the W. Assembly summary 
statistics appear significantly better than the current G. gallus 
reference genome (GRCg6a), and are modest in comparison to 
the most recently annotated G. gallus individual (bGalGal1. 
mat.broiler.GRCg7b; see Table 1). Kmer spectra plots overall 
showed the expected copy-kmer distributions (Fig. 4).

Genome annotation
In total 20,110 genes and pseudogenes were identified by combin
ing gene prediction and similarity approaches, with approximate
ly 80% identified as protein coding. The annotated genes showed a 
98.6% completeness score against 98.9% for the whole genome 
when set against the BUSCO avian dataset (aves_odb10 lineage) 
and indicating 0.9% of genes missing from the annotated assem
bly. The annotation and associate summary statistics are avail
able in NCBI’s RefSeq genome record for the reference (Pruitt 
et al. 2013). The contents of the report are summarized in Table 2.

Fig. 2. Hi-C contact map for the bLagMut1 genome showing long-range 
contacts generated using PretextView (v. 0.2.5).

Fig. 3. A snail plot indicating the completeness of the bLagMut1 genome 
assembly. Summary information about scaffold statistics, BUSCO, and 
the Guanine-Cytosine vs Adenine-Thymine composition of various 
regions are included.
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Table 1. A series of “global” statistics published in the public release of the Rock Ptarmigan reference genome on NCBI indicating the 
completeness of the new reference genome in comparison to the gold standard Chicken reference genome and the most recently 
annotated Chicken reference genome.

Lagopus muta 
Reference 
Genome 

(bLagMut1)

Gallus gallus 
Most Recent Annotation 

(bGalGal1.mat.broiler.GRCg7b)

Gallus gallus Reference Genome 
(GRCg6a)

Total length 1,026,771,810 1,053,332,251 1,065,348,650
Total ungapped length 1,026,699,873 1,049,948,333 1,055,564,190
Gaps between scaffolds 0 0 68
Number of scaffolds 165 214 524
Scaffold N50 71,229,700 90,861,225 20,785,086
Scaffold L50 5 4 12
Number of contigs 375 677 1,402
Contig N50 17,905,263 18,834,961 17,655,422
Contig L50 19 18 19
Chromosomes and 

plasmids
41 42 34

Component sequences 165 677 2,243

Fig. 4. Outputs from Merqury showing kmer distribution according to: a) Spectra-cn plot of the bLagMut1 complete assembly, b) spectra-asm plot of the 
bLagMut1 complete assembly, c) spectra-cn plot of the bLagMut1 primary assembly, and d) spectra-cn plot of the bLagMut1 alternate assembly.
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Mitochondrial genome
The mitochondrial DNA was described with all 13 expected 
protein-coding regions and analyzed for accuracy through com
parative analysis. With our addition, there are now four extant 
mitochondrial genomes published for the Rock Ptarmigan; two 
from Iceland, one from Japan, and one from Siberia (Sveinsdóttir 
and Magnússon 2017; Wang et al. 2017; Yonezawa and Nishibori 
2020). Using the ClustalW package embedded in BioEdit 
(Thompson et al. 1994; Hall 1999), we found a total of 24 bases di
vergent from the previously published Icelandic Rock Ptarmigan 
mitogenome in a manual review. Of these divergences, 14 ap
peared in coding regions and 8 appeared unique to the previously 
published individual and our calls at those locations were con
served in the other Rock Ptarmigan populations. None of the poly
morphisms observed between the populations appeared to be 
uniquely conserved in the Icelandic Population. Analysis of pair
wise distances using phylogenetic tree software in Mega11 
(Tamura et al. 2021) showed clear grouping of the Rock 
Ptarmigan separated from the Willow Ptarmigan, as previously re
ported (Sveinsdóttir and Magnússon 2017).

Discussion/Conclusion
Our avian reference genome includes a highly complete set of in
formation with 99.994% of the 1.03 Gb described matching to 40 
haploid chromosomes and the mitochondria. Other recent works 
have aimed to unlock the potential provided by Rock Ptarmigan 
genetics (Kozma et al. 2018; Kozma et al. 2019; Sigmarsdóttir 
2022). As observed for other recently published genomes 
(Formenti et al. 2022), the new Rock Ptarmigan genome is of com
paratively excellent quality (see also Table 1).

Although Rock Ptarmigan has been globally identified as Least 
Concern by the IUCN in recent years, there have been regional 
fluctuations in its status and some nations identify the species 
as threatened due to long-term declines (Icelandic Institute of 
Natural History 2018; European Commission 2022; IUCN 2023). 
There is evidence that subpopulations of other grouse species 
may poses important local adaptations necessary for persistence 
(Oh et al. 2019), making it probable that the Rock Ptarmigan has 
unique evolutionary adaptations across its range. Further, it is 
well established that Arctic species such as Rock Ptarmigan may 
be disproportionately affected by climate change with an ex
pected poleward contraction of species’ ranges (Birdlife 

International 2015; Kozma et al. 2018). For more disparate popula
tions such as those in the Japanese mountains of Honshu, the 
European Alps, and the Pyrenees, rising tree lines may entirely 
squeeze the Rock Ptarmigan out of its montane niches as has 
been suggested broadly for alpine habitats (Dirnböck et al. 2011; 
Mountain Research Initiative EDW Working Group 2015), and 
some closely related species (Jackson et al. 2015). In the context 
of conservation, having a reference genome available will contrib
ute to our understanding of the species’ genetic risks and possible 
movements in the face of a warming planet (Bay et al. 2018; Kozma 
et al. 2018).

Many wildlife species are difficult to study at the genomic level 
due to limited specimen availability and constraints on procure
ment (Kemp 2015; Hope et al. 2018). Because the Rock Ptarmigan 
is a widespread game bird, it is particularly useful for both genom
ic studies and general investigations into wildlife ecology. Hunters 
have the potential to contribute robust data regarding the species 
trends and may continue to contribute both historical and new 
specimen materials for research (Cretois et al. 2020). Given the 
species’ close cultural connection to some regions and history as 
a food source (McGovern et al. 2006), the Rock Ptarmigan may 
benefit from additional conservation efforts from an involved 
public or concerned hunters and may be a good candidate for flag
ship status (McGowan et al. 2020).

Future studies into Rock Ptarmigan genomics will benefit from 
decades of studies into these birds in captivity (Stokkan et al. 1988). 
Recently, Rock Ptarmigan hatched and raised in captivity have 
been used for gene expression studies to understand circadian 
rhythms and investigate the cecal microbiome representing valu
able opportunities going forward (Salgado-Flores et al. 2019; 
Appenroth et al. 2020; Appenroth et al. 2021).

Among avian diversity, the birds in the family Galliformes re
present less than 3% of all species but have an outsized impact on glo
bal economics with Chickens, Turkeys, Pheasants, Quails, and 
Grouse all being regularly consumed. Among the available avian gen
omes (Bravo et al. 2021) those in order Galliformes are represented 
with 26 species assemblies currently available on NCBI (approxi
mately 5% of all extant; Sayers et al. 2022). Among these, 68 assem
blies have been completed and the chicken has been assembled 30 
times (for context see Burt 2005; Li et al. 2022). This highlights a com
mercial implication for Rock Ptarmigans as they have many special 
adaptations that could be of importance to domestic poultry.

Given the usefulness of wild relatives for research into domes
ticated species (Li et al. 2020; Jackson et al. 2015) the Rock 

Table 2. Comparative table showing the relative accuracy and completeness of the Lagopus muta reference annotation (NCBI Lagopus muta 
Annotation Release 100) against the most recently complete annotation of the chicken genome (NCBI Gallus gallus Annotation Release 106).

Lagopus muta 
Reference Genome Annotation 

(bLagMut1)

Gallus gallus 
Most Recent Annotation (bGalGal1.mat.broiler.GRCg7b)

Genes and pseudogenes 20,110 25,635
Protein-coding genes 16,078 18,023
Noncoding genes 3,738 7,330
mRNA 43,785 68,670
Long non coding RNAs 5,431 10,062
tRNA 306 303
Protein coding sequences 43,793 68,683
Introns (mean length) 206,142 (4,265) 241,290 (4,145)
Exons (mean length) 229,018 (394) 262,919 (490)
Mean gene size 33 kb 28 kb
Maximum gene size 1.6 Mb 1.3 Mb
BUSCO score 98.6% 98.7%
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Ptarmigan may prove to be a useful model for understanding 
other Galliformes. This relationship will surely have limitations 
in the genomic realm as more distantly related species are less in
formative at finer scales than those that are closely related 
(Scutari et al. 2016). However, if the Rock Ptarmigan’s genes tai
lored to arctic landscapes can be used to better understand genet
ic architecture for cold weather survival, improved forage 
capabilities, or other ancestral traits, then important pathways 
may be identified for commercially exploited birds or other spe
cies of conservation interest.

Taking all of this into consideration, the availability of a Rock 
Ptarmigan reference genome makes the species exceptionally 
well positioned for investigation across a broad new range of sci
entific inquiry. With links to arctic/alpine biomes, conservation, 
hunting culture, and industry, the Rock Ptarmigan reference gen
ome provides a unique opportunity to investigate a species at the 
intersection of many issues of global significance.

Data availability
The final annotation has been publicly released and uploaded ac
cording to the high standards of the Earth BioGenome Project 
(Lewin et al. 2018). The genome assembly, including the raw 
shotgun sequencing data, has been uploaded to NCBI and is avail
able at https://www.ncbi.nlm.nih.gov/assembly/GCA_023343835. 
1; BioProject: PRJNA836583; BioSample: SAMN25144835. The 
mitochondrial assembly is publicly available in NCBI and is avail
able at https://www.ncbi.nlm.nih.gov/nuccore/OQ580988.1.
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